نامساوی هرمیت-هادامارد در فضاهای با خمیدگی نامثبت
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه
- author فاطمه رضایی
- adviser علی بارانی امیرقاسم غضنفری
- Number of pages: First 15 pages
- publication year 1392
abstract
ابتدا فضاهای متریک با انحنای نامثبت را معرفی می کنیم و سپس در مورد مرکز جرم اندازه های احتمال روی چنین فضاهایی بحث می کنیم. هم چنین چند نوع از نامساوی هرمیت-هادامارد را برای توابع محدب در فضای با انحنای نامثبت سرتاسری ارائه می دهیم. در مبث مرکزجرم اندازه های احتمال در فضای با انحنای نامثبت سرتاسری، نتایج مهمی نظیر نامساوی ینسن و خاصیت l^1 -انقباضی بیان و ثابت می شودو در آخر مرکزجرم تصاویر، l^2 -فضاها و فضاهای هیلبرت را بیان می کنیم.همچنین قضیه کرین-میلمن نیز بیان و ثابت می شود.
similar resources
نامساوی هرمیت-هادامارد روی سادکها
در این پایان نامه، ابتدا تعاریف و قضایایی در حوزه آنالیز محدب بیان می کنیم سپس چند تا از نامساوی های مربوط به تعمیم نامساوی هرمیت-هادامارد روی مثلث و چند وجهی های منتظم ثابت می شود. در نتیجه نشان داده می شود نامساوی هادامارد روی یک دیسک برقرار است اما با توجه به اینکه سمت چپ نامساوی هادامارد کوچکتر از انتگرال مقدار میانی واحد راست است، نشان داده می شود برای توابع چند متغیره این مورد صحیح نیست.و...
رده بندی توابع محدب با استفاده از نامساوی هرمیت-هادامارد
توابع محدب یکی از مهمترین توابع در ریاضیات می باشند.رده بندی این نوع توابع اهمیت ویژه ای دارد و ریاضیدانان زیادی در این زمینه مشغول به مطالعه و تحقیق هستند.در این رساله ابتدا تعاریف و قضایای مقدماتی مطرح می شود.سپس به رده بندی توابع یک متغیره ی محدب روی بازه های باز با استفاده از نامساوی هرمیت هادامارد پرداخته می شود.در ادامه به رده بندی توابع چند متغیره ی محدب روی زیر مجموعه های rn می پردازیم.
15 صفحه اولنامساوی هرمیت- هادامارد برای توابع چند متغیره
باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و ج...
15 صفحه اولنامساوی های نوع هرمیت - هادامارد برای تابع h-محدب
نامساوی هرمیت-هادامارد یکی از نامساوی های مهمی است که توجه بسیاری از ریاضیدانان را به خود جلب کرده است. در این رساله ابتدا این نامساوی را برای تابع محدب بررسی می کنیم. سپس نامساوی هرمیت-هادامارد را برای برخی توابع محدب و شبه محدب دیفرانسیل پذیر ارائه می دهیم و کاربردهایی از میانگین های خاص را بیان می کنیم. به علاوه این نامساوی را برای تابع s-محدب نیز بررسی می کنیم، در ادامه پس از یک مطالعه ی گس...
نامساوی های نوع هرمیت-هادامارد برای توابع عملگرمحدب
دراین رساله, پس از بیان مقدمه ای کوتاه در مورد نامساوی مشهور هرمیت-هادامارد برای توابع محدب, قصد داریم مدلی عملگری از این نامساوی برای توابع عملگرمحدب ارائه دهیم. برای این منظور, ابتدا به تعاریف و قضایایی مقدماتی نیاز داریم که در فصل اول به آن ها پرداخته ایم. سپس در ادامه, ویژگی هایی از عملگرها را در فضاهای هیلبرت بیان می کنیم. پس از این مقدمات, نامساوی هرمیت-هادامارد را برای توابع محدب از عملگ...
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023